Skip to main content
plas-tech engineering - Supplier for COC/COP PFS Syringes
Schreiner
rochling

Login Menu

  • Login
  • Register
Home
  • HOME
  • CONNECTIONS
    • Suppliers
    • Buyers
    • Professionals
    • User Companies
    • Softwares
    • Others
  • INDUSTRY UPDATES
    • Packaging News
    • Innovations
    • Press Releases
    • Events
    • Resources
    • Newsletter
    • Testimonials
    • Packaging Interviews
    • Packaging 4 startups
  • BLOG
  • OUR PRODUCTS
    • Big Book of Packaging
  • OUR PARTNERS
    • Bonini
    • Bernhardt
    • EMA
    • Haemotronic
    • Intin
    • Plas-Tech Engineering
    • Polycine
    • Rochling
    • Sanok Rubber
    • Schreiner
    • TARA
    • Yukon Medical
  • SERVICES
    • SUSTAINABLE EXHIBITION
    • CONSULTING
    • DESIGN SERVICES
    • NEWSLETTER SUBSCRIPTION

Breadcrumb

  1. Home
  2. Recycling processes based on enzymes that break down plastics by 70%

Recycling processes based on enzymes that break down plastics by 70%

Profile picture for user supportpc
By Yukta Arora on Mon, 06/08/2020 - 13:39

Funded by IVACE and co-funded by the European Union (ERDF) through the Spanish Autonomous Community of Valencia ERDF operational programme (2014-2020), the ENZPLAST project focused in its first year on new methods for the synthesis of plastics that are safer for human health and more environmentally friendly. In particular, enzymes were used instead of metal catalysts to obtain polyesters. This provided two benefits: reducing the toxicity of these metal catalysts and lowering energy consumption during the polymerization process. In the second year of the project, under the name ENZPLAST2, a procedure is being developed to use microorganisms to eliminate odours from dairy packaging. Initial results indicate a reduction in the odour intensity of recycled dairy packaging. In addition, treating polyurethane-type polymers with selected isolated microorganisms has been shown to help degrade these polymers by as much as 70%. Finally, studies have also been carried out in the second year on including polymer-supported enzymes in a molten polymer to improve the biodegradation of different bioplastics under aerobic and anaerobic digestion conditions.

Recycling processes based on enzymes that break down plastics by 70%
recycling
packaging
  • Log in or register to post comments
plas-tech engineering - Supplier for COC/COP PFS Syringes
YUKON MEDICAL
TARA NIRMAN
schreiner
rochling
3 months ago
Recycling Program Turns Label Waste Into New Packaging
3 months ago
The High-Tech Secrets Behind the Humble Tin Can: A Modern Marvel of Steel Innovation
3 months ago
Recyclability Emerges as Top Priority for European Consumers, Amcor Study Finds

Follow Us

  • linkedin
  • facebook-f
  • twitter

Explore

  • Home
  • Contact Us
  • About us
  • Advertise With Us
  • Login
  • Register
  • Add Testimonial

Company

  • Blog
  • Contact Us
  • Events
  • Packaging News
  • Terms & Conditions
Top 7 Packaging Must-Haves for Personal Care Products
Top 7 Packaging Must-Haves for Personal Care Products
03 May, 2025
FDA
Navigating New FDA Packaging Regulations in 2025: A Complete Guide
29 Apr, 2025
Lamination
Unveiling the Future of Lamination Films: Trends, Challenges & How Purchasers Can Stay Ahead!
26 Apr, 2025

Footer menu

  • Privacy
  • Terms and conditions
  • Contact
Home
  • HOME
  • CONNECTIONS
    • Suppliers
    • Buyers
    • Professionals
    • User Companies
    • Softwares
    • Others
  • INDUSTRY UPDATES
    • Packaging News
    • Innovations
    • Press Releases
    • Events
    • Resources
    • Newsletter
    • Testimonials
    • Packaging Interviews
    • Packaging 4 startups
  • BLOG
  • OUR PRODUCTS
    • Big Book of Packaging
  • OUR PARTNERS
    • Bonini
    • Bernhardt
    • EMA
    • Haemotronic
    • Intin
    • Plas-Tech Engineering
    • Polycine
    • Rochling
    • Sanok Rubber
    • Schreiner
    • TARA
    • Yukon Medical
  • SERVICES
    • SUSTAINABLE EXHIBITION
    • CONSULTING
    • DESIGN SERVICES
    • NEWSLETTER SUBSCRIPTION
Clear keys input element